
 

Clinical and Experimental Immunology

 

© 2006 British Society for Immunology, 

 

Clinical and Experimental Immunology

 

, 

 

144:

 

 1–9

 

1

 

doi:10.1111/j.1365-2249.2005.02980.x

  

Accepted for publication 14 October 2005

E.mail: drbsbaker@aol.com

 

R EV I EW

 

The role of microorganisms in atopic dermatitis

 

B. S. Baker

 

Summary

 

Atopic dermatitis (AD) is a common, fluctuating skin disease that is often
associated with atopic conditions such as asthma and IgE-mediated food
allergy and whose skin lesions are characterized by a Th-2 cell-mediated
response to environmental antigens. The increasing prevalence and severity of
atopic diseases including AD over the last three decades has been attributed to
decreased exposure to microorganisms during early life, which may result in
an altered Th-1/Th-2-balance and/or reduced T cell regulation of the immune
response. Patients with AD exhibit defects in innate and acquired immune
responses resulting in a heightened susceptibility to bacterial, fungal and viral
infections, most notably colonization by 

 

S. aureus

 

. Toxins produced by 

 

S.
aureus

 

 exacerbate disease activity by both the induction of toxin-specific IgE
and the activation of various cell types including Th-2 cells, eosinophils and
keratinocytes. Allergens expressed by the yeast 

 

Malazessia furfur

 

, a compo-
nent of normal skin flora, have also been implicated in disease pathogenesis in
a subset of AD patients.

Microorganisms play an influential role in AD pathogenesis, interacting
with disease susceptibility genes to cause initiation and/or exacerbation of
disease activity.

 

Introduction

 

Atopic dermatitis (AD) is a common, chronic fluctuating
skin disease with prevalence in children of between 7 and
17%. The disease presents commonly within the first 2 years
of life, and in approximately two-thirds of cases will persist
into adulthood. A high proportion of infants with AD have a
positive family history of AD, asthma or allergic rhinitis in
one or both parents, and will go on to develop further atopic
complications later in childhood. AD is a multifactorial dis-
ease in which both hereditary and environmental factors
play a role. Four chromosomal regions of linkage to the dis-
ease, which differ from atopy-associated loci, have been
identified in genome scans of children with AD [1,2]. Inter-
estingly, these linkage sites closely correspond to four loci
reported to contain susceptibility genes for psoriasis suggest-
ing that they may contain genes that control skin inflamma-
tion and immunity in both diseases [2]. In addition, several
candidate genes coding for proteins with immunological
function, such as the high affinity IgE receptor present on
mast cells, Th-2 cytokines, RANTES and IRF2 [3–8], and
receptors involved in the response to microorganisms,

CARD4/Nod1, CARD15/Nod2, TLR2 and TLR4 [9–11] have
been implicated in AD. Environmental factors that interact
with susceptibility genes in AD, inducing the production of
IgE antibodies and activation of Th-2 cells, include foods,
house dust mite (HDM) allergens, secondary microbial
infections and stress. This review focuses on the role of
microorganisms in AD, and discusses the mechanisms
involved in the prevention, initiation and exacerbation of
disease activity by microbial components.

 

The hygiene hypothesis

 

Over the last 30 years there has been a continuously increas-
ing prevalence of AD and other atopic allergic disorders,
especially in western industrial countries where it can be as
high as 20–37% of the population [12]. Environmental fac-
tors such as increased air pollution, indoor exposure to
HDM antigens in less ventilated modern homes, and dietary
changes have been implicated, but there is little consistent
evidence that these factors account for the observations. A
more relevant factor appears to be a reduction in the expo-
sure to infections during early childhood, which may result
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from modern lifestyle factors such as the use of antibiotics, a
reduction in family size (allergic sensitization is higher in
the first-born, but is less frequent in children from large
families), and an increase in hygiene and living standards
[13]. The relationship between decreased exposure to
microbial antigens associated with a western lifestyle and the
increasing severity and prevalence of atopic diseases has
become known as the ‘hygiene hypothesis’ [14]. Innate
immune cells, such as macrophages and dendritic cells,
express pattern recognition receptors (PRRs) that recognize
pathogen-associated molecular patterns (PAMPs) associated
with microorganisms; activation of these receptors induces a
Th-1 type response. It was therefore suggested that a lack of
microbial antigen-induced immune deviation from the Th-
2 cytokine profile that predominates at birth to a Th-1 type
profile could explain the development of enhanced Th-2 cell
responses to allergens (Fig. 1) [15]. However, this explana-
tion did not did not take into account the fact that chronic
parasitic worm (helminth) infections which induce strong
Th-2 responses and high IgE levels are not associated with
allergy, or that the prevalence of Th-1-associated autoim-
mune diseases have also increased at the same time as aller-
gic diseases [16].

Subsequently, a second mechanism was proposed for the
switch to an atopic phenotype; a defect in the stimulation of
dendritic cells by nonpathogenic microorganisms in gut-
associated lymphoid tissue leading to reduced production of
IL-10-producing regulatory T cells (Fig. 1) [16,17]. Differ-
ences in the bacterial colonization of the gut have been
reported in children with AD; 

 

Enterococci

 

 and 

 

Bifidobacteria

 

were reduced, and 

 

Clostridia

 

 and 

 

Staphylococcus aureus

 

numbers increased [18,19]. These changes have been attrib-
uted, at least in part, to a frequent use of antibiotics, which
has consistently been shown to markedly increase the risk of
developing AD, even into the antenatal period [20]. This has
led to the use of diet supplementation with 

 

Lactobacillus

 

(marketed as probiotics) in both the prevention and treat-
ment of AD [20]. A randomised, controlled trial in which
oral 

 

Lactobacillus

 

 CG supplementation was given prenatally
to mothers with an allergic family history, and postnatally
for 6 months to their offspring, resulted in an almost 50%
reduction in AD frequency [21]. Furthermore, a significant
reduction in SCORAD (disease severity scoring of atopic
dermatitis) after one month of 

 

Lactobacillus

 

 GG supplemen-
tation was observed in a randomised controlled trial of 31
infants with AD and cow’s milk intolerance [22]. It was
subsequently demonstrated that 

 

L. reuteri

 

 and 

 

L. casei

 

prime monocyte-derived dendritic cells, via DC-SIGN
(DC-specific intercellular adhesion molecule 3-grabbing
nonintegrin), to drive the development of IL-10-producing
regulatory T cells [23]. These findings suggested a possible
mechanism for the beneficial effects of 

 

Lactobacillus

 

 admin-
istration in AD, and provided support for the proposal that
reduced T cell regulatory activity may be responsible for the
increased prevalence of allergy.

Although a recent review of 64 studies published between
1966 and August 2004 failed to find any convincing evidence
that exposure to a specific infection such as tuberculosis
reduces the risk of AD, there was, in contrast, some evidence

 

Fig. 1.
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that common viral and bacterial childhood infections were
positively associated with an increased risk of AD expression
[20]. However, a protective effect was associated with endot-
oxin exposure in a farming environment, day care atten-
dance or having a dog during infancy, situations in which
chronic (nonpathological) microbial stimulation may take
place. Thus it is possible that the effects of infections in early
childhood on the development of AD may depend partly
upon the nature and degree of exposure, rather than
infection 

 

per se

 

. Clearly further research into the early prim-
ing of a child’s immune system by microorganisms is neces-
sary in order to establish the factors required to induce the
development of AD.

 

Microbial colonization of AD skin

 

Patients with AD are highly susceptible to certain cutaneous
bacterial, fungal and viral infections [24]. AD patients have
an increased incidence of warts caused by the human papil-
lomavirus, and of cutaneous fungal infections such as that
caused by 

 

Trichophyton rubrum

 

. They are particularly sus-
ceptible to severe infections caused by herpes simplex type 1
virus (eczema herpeticum or Kaposi’s varicelliform), vac-
cinia virus (eczema vaccinatum) coxsackieA virus and
molluscum contagiosum virus. These viral infections can
represent serious complications in AD, and if not treated
promptly have the potential to be life threatening. However,
bacterial colonization with 

 

Staphylococcus aureus

 

 is the most
common skin infection in AD (

 

>

 

 90% of patients compared
to 5% of normal individuals) and occurs on both lesional
and, to a lesser extent, nonlesional AD skin [25,26]. Further-
more, there appears to be a causative relationship between
the numbers of bacteria present on the skin and the severity
of disease in AD patients, whilst treatment-induced removal
of the bacteria is associated with improvement in skin lesions
in most cases [27,28]. Various factors are involved in the
altered skin colonization by 

 

S. aureus

 

 in AD including an
altered epidermal barrier, increased bacterial adhesion,
defective bacterial clearance, and decreased innate immune
responses.

 

S. aureus

 

 are tightly attached to the uppermost corneo-
cytes, and can penetrate the epidermis via the intercellular
spaces probably as a result of lipid deficiencies in AD skin.
In AD, the average pH of the skin is slightly more alkaline,
and sphingosine levels are decreased in both lesional and
nonlesional stratum corneum [29,30]. In addition, the dry-
ness and cracking of AD skin, as a result of transepidermal
water loss caused by altered lipid content, may facilitate
bacterial colonization. Furthermore, Th-2 cytokines such as
IL-4 in atopic skin increase expression of fibronectin and
fibrinogen, receptors that mediate the adhesion of 

 

S. aureus

 

to stratum corneum [31]. In a proportion of AD patients
who respond poorly to anti-inflammatory treatment, per-
sistent 

 

S. aureus

 

 colonization is associated with higher total
IgE levels suggesting that IgE may contribute to an

increased susceptibility to infection [28]. Indeed, IgE has
been shown to inhibit neutrophil adhesion, phagocytosis
and respiratory burst, which may affect clearance of micro-
organisms from the skin [32]. A major factor in increased 

 

S.
aureus

 

 colonization of AD skin is a defective cutaneous
innate immune response, involving decreased production of
antimicrobial peptides and the expression of functional
variants of the TLR and Nod/CARD receptors for microbial
components (Fig. 2).

 

Defective innate immunity in AD: antimicrobial 
peptides

 

The innate immune system of the epidermis is the first line of
defence against invasion by microorganisms, which gain
entry after the skin is damaged. Anti-microbial peptides
form part of this defence system, three of which are triggered
by injury or inflammation of the skin: the 

 

β

 

 defensins HBD-
2 and HBD-3, and a cathelicidin, hCAP18/LL-37 [33]. HBD-
2 shows microbicidal activity against predominately Gram-
negative organisms such as 

 

E. coli

 

 and 

 

P. aeruginosa

 

, and
yeasts, but is relatively ineffective against Gram-positive bac-
teria such as 

 

S. aureus

 

 [34]. In contrast, HBD-3 and hCAP18/
LL-37 are more potent, broad-spectrum antibiotics that kill
both Gram-positive and Gram-negative organisms and the
yeast 

 

C. albicans

 

 [35,36]. In addition, HBD-2 can enhance
the innate immune response of the epidermis, and provide a
link with the acquired immune response by inducing up-reg-
ulation of costimulatory molecules and the maturation of
immature dendritic cells in a TLR4-dependent manner [37].
Beta-defensins can also act as chemoattractants for imma-
ture dendritic cells and memory T lymphocytes via the
chemokine receptor CCR6 [38].

Immunostaining, measurement of specific mRNA by real-
time reverse-transcriptase-PCR or GeneChip microarray
analysis for HBD-2, HBD-3 and hCAP18/LL-37 in acute and
chronic lesions from patients with AD showed a significant
decrease in expression as compared to that of psoriasis
patients [39,40]. IL-4 and/or IL-13, has been shown to sup-
press the TNF-

 

α

 

 or IFN-

 

γ

 

-induced up-regulation of HBD-2
and HBD-3 mRNA in keratinocytes and normal skin
explants suggesting that the reduced levels of antimicrobial
peptides may be explained by the predominance of Th-2
type cytokines in AD skin lesions [40]. Clinical isolates of 

 

S.
aureus

 

 from AD patients can be killed by a combination of
HBD-2 and hCAP18/LL-37 at the concentrations found in
psoriatic lesions, but the levels present in AD skin are too low
to be effective.

The innate skin defence system of patients with AD is
further compromised by a deficiency of dermcidin-derived
antimicrobial peptides in sweat, which correlates with infec-
tious complications [41]. Dermcidin, a peptide with no
homology to other antimicrobial peptides, is specifically and
constitutively expressed in sweat glands in the dermis of skin,
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secreted into sweat and transported to the epidermal surface
[42]. In common with HBD-3 and hCAP18/LL-37, dermci-
din has a broad spectrum of activity against a variety of patho-
genic microorganisms. In healthy individuals, a significant
reduction in viable bacterial cells on the skin surface occurs
after sweating, but this is not the case in patients with AD [41].
Furthermore, the rate of sweat production, and the secretion
of IgA in sweat are reduced in AD patients contributing to the
impaired innate immune response [43,44].

The expression of the innate immune response genes, IL-
8 (CXCL8) and induced nitric oxide synthetase (iNos) was
also decreased in AD compared to psoriatic skin [40]. IL-8 is
a chemokine that attracts polymorphonuclear leucocytes
into the skin where they phagocytose and kill bacteria, whilst
iNos can kill viruses, bacteria and fungi through production
of nitric oxide. In common with the antimicrobial peptides,
production of IL-8 and iNos is also inhibited by Th-2
cytokines.

 

Defective innate immunity in AD: TLR and 
Nod/CARD proteins

 

Toll-like receptor 2 (TLR2) and TLR4 are members of a
family of PRRs that recognize various conserved microbial
components or PAMPs. TLR2 recognizes components of
Gram-positive bacteria and yeasts, such as lipotechoic acid,
peptidoglycan (although recent evidence suggests that this
may be contaminating lipoteichoic acid [45]), lipoproteins
or zymosan, whilst the PAMPs detected by TLR4 include the
Gram-negative bacterial component, LPS [46]. Recognition
of PAMPs by TLRs initiates a signalling cascade that results
in the production of proinflammatory cytokines, chemok-

ines, antimicrobial peptides and inducible enzymes in the
skin, via activation of transcription factors, activator protein
(AP)-1 and nuclear factor (NF)-

 

κ

 

B [47]. Two single
nucleotide polymorphisms (SNPs) have been described for
each of the receptors, which result in changes in amino acid
sequences. One of the TLR2 polymorphisms (Arg753Gln),
which is located within the intracellular part of the receptor
and has been particularly associated with 

 

S. aureus

 

 infec-
tions, was found to be present in a higher frequency in AD
patients compared to controls [11]. The subgroup of AD
patients carrying this polymorphism had increased disease
severity characterized by markedly elevated IgE antibodies to

 

S. aureus

 

 superantigens and HDM allergens. In addition, a
further subgroup of AD patients expressed a higher fre-
quency of the two TLR4 polymorphisms, Asp299Gly and
Thr399Ile, than controls [11]. These cosegregating polymor-
phisms, located in the extracellular domain of the receptor,
have previously been reported in patients with septic shock,
particularly that induced by Gram-negative bacteria, and are
linked to LPS hyporesponsiveness [48].

Intracellular PRRs are represented by the Nod (nucle-
otide-binding oligomerization domain) family, which
includes Nod2/caspase recruitment domain containing pro-
tein (CARD) 15 and the closely related Nod1/CARD4
protein. Both proteins detect peptidoglycan, the major
component of the bacterial cell wall, although the specifici-
ties of the two receptors are distinct and nonoverlapping
[49]. Polymorphisms in the Nod2/CARD15 gene that result
in changes in peptidoglycan recognition have been reported
to be associated with susceptibility to Crohn’s disease, a Th-
1-mediated inflammatory disease of the bowel [50,51].
Three of these Crohn’s-associated Nod2/CARD15 polymor-

 

Fig. 2.
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phisms have been investigated in children with asthma and
allergy by PCR-based restriction enzyme assays [10]. Chil-
dren with the polymorphic C2722 allele had a more than 3-
fold risk to develop allergic rhinitis and an almost 2-fold risk
for AD. More recently, an association of Nod1/CARD4 poly-
morphisms with AD have been reported in a study that
examined the effects of 11 SNPs, covering the complete gene,
on atopy phenotypes [9]. One Nod1/CARD4 haplotype and
three polymorphisms (rs2907748, rs2907749, rs2075822)
were significantly associated with AD in a population-based
cohort, case-control population, and/or family–based asso-
ciation analysis. These polymorphisms were also associated
with asthma and total serum IgE levels, but not with allergic
rhinoconjunctivitis or specific sensitization.

Peptidoglycan from 

 

S. aureus

 

 has been shown to induce
the production of various keratinocyte-derived mediators
including GM-CSF, a cytokine that is overproduced in AD
skin lesions [52]. It remains to be established whether this
occurs via PRR stimulation; however, keratinocytes are
known to express several members of the TLR family [47],
and intracellular Nod/CARD receptors may also be present
in these cells.

Thus the reduced production of antimicrobial peptides
and other innate immune factors, together with an impaired
recognition of microbial antigens as a result of functional
polymorphisms in the genes coding for PRRs, are major fac-
tors contributing to the susceptibility to infection and result-
ing exacerbation of disease activity in patients with AD.

 

Cellular activation by staphylococcal superantigens

 

The main consequence of increased colonization of AD skin
by 

 

S. aureus

 

 is exacerbation of the inflammatory immune

response, which is largely mediated by the release of staphy-
lococcal enterotoxins (SE), such as SEA, SEB and toxic shock
syndrome toxin (TSST)-1, also referred to as ‘superantigens’
[53] (Table 1). SEB applied to intact normal skin or the non-
lesional skin of patients with AD can induce erythema and
dermatitis, and, in some AD patients, a flare of their disease
in the elbow flexure of the same arm to which the toxin was
applied [54]. Furthermore, 14 of 68 patients recovering from
toxic shock syndrome caused by TSST-1, but no patients
recovering from Gram-negative sepsis, developed chronic
eczematous dermatitis [55]. These findings suggest that
superantigens can initiate, exacerbate and maintain inflam-
mation associated with AD.

The major effects of staphylococcal superantigens in AD
are likely to be mediated via the polyclonal activation of
superantigen-specific TCR V

 

β

 

 families of T cells. T cells
expressing V

 

β

 

 chains specific for the superantigen accumulate
selectively in superantigen-treated skin, but not in skin
treated with sodium lauryl sulphate, supporting this
hypothesis [56]. In the peripheral blood of AD patients whose
skin is colonized by superantigen-secreting 

 

S. aureus

 

, a rele-
vant skewing of superantigen-reactive V

 

β

 

 families was
observed in CD4

 

+

 

 and CD8

 

+

 

 T cells coexpressing cutaneous
lymphocyte antigen (CLA), a skin homing receptor [57].
Superantigens up-regulate CLA expression by T cells via stim-
ulation of IL-12 production, thus promoting their homing to
the skin [58].

T cell activation by superantigens may be further aug-
mented by an inhibitory effect (at least by SEB) on the
immunosuppressive activity of circulating CLA

 

+

 

CD4

 

+

 

 CD25

 

+

 

regulatory T cells, which, surprisingly, are increased in
patients with AD [59]. Furthermore, SEB-reactive (V

 

β

 

3

 

+

 

,
V

 

β

 

12

 

+

 

 or V

 

β

 

17

 

+

 

) CD4

 

+

 

 T cells producing Th-2 cytokines in

 

Table 1.

 

Role of staphylococcal superantigens in AD.

Superantigen-induced effects Functional consequences

Application of SEB to uninvolved skin Induces local erythema and dermatitis

Sometimes causes disease flare

Superantigen-specific IgE production Release of histamine by mast cells and basophils

Facilitates toxin presentation by Langerhans cells to T cells

Correlates with disease severity

SEC1-specific IgG

 

2

 

 production Decreased in AD; may affect phagocytosis of S. 

 

aureus

 

 by 

polymorphonuclear leucocytes

Selective V

 

β

 

 family expansion in lesional skin and blood Activation of Th-2 cells in a V

 

β

 

-specific manner

CLA expression on activated Th-2 cells, circulating and in lesional skin Induces homing of T cells to skin

Apoptosis of superantigen-reactive T cells SEB-reactive Th-2 cells in AD are apoptosis-resistant, thus helping to 

maintain information

Inhibition of CLA

 

+

 

CD4

 

+

 

CD25

 

+

 

 regulatory T cell activity Increases inflammation

Dermal eosinophils Inhibits apoptosis, increases expression of surface activation antigens 

and enhances oxidative burst

Langerhans cells and macrophages Stimulates production of IL-1, TNF-

 

α

 

 and IL-12

HLA-DR

 

+

 

 keratinocytes Transient Ca

 

2

 

+

 

 mobilization

TNF-

 

α

 

 production

Presentation of superantigen to Th-2 cells
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AD patients are more resistant to SEB-induced apoptosis
than corresponding SEB-reactive Th-1 cells from healthy
individuals [60].

In addition to T cells, superantigens can also mediate
effects on other cell types such as eosinophils, Langerhans
cells, macrophages and keratinocytes. During flares of AD,
eosinophils are recruited to the skin by chemoattractants
such as RANTES (regulated on activation, normal T
expressed and secreted) and eotaxin, where they are acti-
vated and undergo degranulation and cytolytic degenera-
tion, the products of which promote inflammation and
tissue damage [61,62]. It has been demonstrated that SEB in
AD skin lesions is localized predominately to eosinophils in
the dermis, as well as to a lesser extent on Langerhans cells
and IgE-bearing cells [63]. Superantigens modulate the
effector function of eosinophils, and probably the course of
AD, by inhibiting eosinophil apoptosis, increasing expres-
sion of activation antigens on the eosinophil surface, and
enhancing oxidative burst of eosinophils 

 

in vitro

 

 [64]. They
also bind to HLA-DR on Langerhans cells and macrophages
and stimulate them to produce IL-1, TNF-

 

α

 

 and/or IL-12.
These cytokines either up-regulate the expression of adhe-
sion molecules on endothelial cells, or increase CLA expres-
sion on T cells, respectively, thus facilitating the recruitment
of CLA

 

+

 

 memory T cells to the skin. In addition, kerati-
nocytes that have been induced to express MHC Class II
molecules by stimulation with IFN-

 

γ

 

 can interact with
superantigens, resulting in transient intracellular Ca

 

2

 

+

 

mobilization and the release of proinflammatory TNF-

 

α

 

[65,66]. HLA-DR

 

+

 

 keratinocytes can also present superanti-
gens to T cells; because KCs do not synthesize IL-12, this
results in the activation of Th-2 rather than Th-1 cells [67].
Two other 

 

S. aureus

 

 products, staphylococcal protein A and

 

α

 

-toxin also induce the production of TNF-

 

α

 

 by kerati-
nocytes, with additional cytotoxic effects exerted by the lat-
ter [68].

 

Superantigen-specific IgE and IgG

 

2

 

 antibodies

 

Superantigen-secreting 

 

S. aureus

 

 have been isolated from
over 50% of AD patients, and many of these patients produce
IgE antibodies specific for the toxins found on their skin
[69,70]. In contrast, although SEA, SEB or TSST – secreting

 

S. aureus

 

 have also been isolated from the lesional skin of
psoriasis patients, their sera did not contain IgE antibodies
to the toxins [69]. Basophils and mast cells from AD patients
with antitoxin IgE antibodies release histamine on exposure
to toxins, but only those toxins against which they have
raised specific IgE antibody [69]. Furthermore, there is a cor-
relation between the presence of IgE antibodies specific for
staphylococcal superantigens and both the severity of AD,
and total serum IgE levels [71]. Thus toxins produced by 

 

S.
aureus

 

 also exacerbate AD by activating mast cells, basophils
and other Fc

 

ε

 

-receptor bearing cells carrying the relevant
antitoxin IgE antibody.

Conversely, a subgroup of patients with AD showed a defi-
ciency in the production of IgG

 

2

 

, but not of IgG

 

1

 

 or IgG

 

4

 

antibodies against toxin SEC

 

1

 

, which was associated with a
severe disease phenotype [71]. This appeared to be specific
for SEC

 

1

 

 as levels of IgG

 

2

 

 antibodies against SEB, or another
bacterial antigen, pneumococcal capsular polysaccharide,
were normal in these patients. IgG

 

2

 

 antibodies are poor com-
plement activators, but can effectively mediate polymorpho-
nuclear leucocyte phagocytosis of 

 

S. aureus

 

 via the Fc

 

γ

 

RIIa
receptor on the cell surface [72]. Although the functional
role of anti-SEC

 

1

 

 IgG

 

2

 

 antibodies in AD pathogenesis
remains unclear, it is possible that such a selective decrease in
some patients with AD may contribute to the persistence of
SEC

 

1

 

-producing 

 

S. aureus

 

 on lesional skin and the resulting
exacerbation of disease activity.

 

Malassezia-induced IgE- and Th-

 

2

 

 cell-mediated 
responses

 

Malassezia

 

 (formerly known as 

 

Pityrosporum orbiculare/
ovale

 

) is part of the normal human skin flora and is most
abundant at sites of high sebum production such as the scalp,
chest and back where it colonizes the stratum corneum.
Most healthy individuals have developed IgG antibodies to

 

Malassezia

 

, but in 30–80% of AD patients, IgE and/or T cell
reactivity to the organism is present [73]. Patients with AD
affecting mainly the head and neck region appear to be more
likely to produce Malassezia-specific IgE antibodies, coincid-
ing with the higher levels of yeast colonization in these areas,
than patients with AD located elsewhere on the body [74].
Malassezia-specific IgE antibodies are rarely produced by
atopic patients whose skin is unaffected [75,76]. This,
together with the high prevalence of type I hypersensitivity
to Malassezia as compared to other fungi in AD suggests that
Malassezia-specific antibodies are pathogenically significant
[77,78]. Histamine release tests have confirmed the biologi-
cal activity of circulating Malassezia-specific IgE antibodies
in approximately 70% of AD patients, supporting a role for
these antibodies in the disease process [78].

The defective skin barrier in AD may allow the whole
Malassezia yeast cells and their allergens, nine of which have
been isolated and cloned so far, to enter the skin and be taken
up by Langerhans cells. In vitro studies have shown that the
process of internalization of Malassezia causes maturation of
dendritic cells and the production of proinflammatory and
immunoregulatory cytokines, but not IL-12, thereby favour-
ing the induction of a Th-2 type response [79]. Indeed,
higher blood and skin Th-2 type responses to Malassezia
have been demonstrated in vitro in AD patients compared to
that of normal controls [80]. Furthermore, it has been dem-
onstrated that a positive atopy patch test to Malassezia in vivo
correlates with a Th-2-like peripheral blood mononuclear
cell response in AD patients in vitro [81].

Malassezia also exerts other proinflammatory effects such
as activation of the alternative complement pathway, and the
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stimulation of keratinocytes to produce a variety of inflam-
matory cytokines such as IL-6, IL-8 and TNF-α, which may
contribute to its role in AD pathogenesis [82,83]. However,
antifungal treatment studies have so far proved inconclusive
as to the clinical relevance of Malassezia-induced allergy in
AD. This may be explained by a lack of selection of relevant
patient subgroups and the use of inappropriate measures of
clinical outcome [84].

Conclusion

AD is a chronic inflammatory skin disease whose initiation
and clinical activity is modified by exposure to, and interac-
tion with, microorganisms. In genetically predisposed indi-
viduals a lack of chronic exposure to microbial antigens in
early life increases the risk of disease. Once manifested,
defects in skin immune surveillance mechanisms such as
decreased production of antimicrobial peptides and the
expression of functionally altered PRRs result in exacerba-
tion of disease activity by skin colonizing microorganisms,
particularly S. aureus and Malassezia furfur. Manipulation of
the innate immune response to microorganisms could pro-
vide a novel approach to the treatment of AD, as suggested by
the beneficial effects of administration of probiotic bacteria
in preliminary studies. TLR ligands are also being tested for
their ability to shift an allergen-specific Th-2 immune
response to that of protective Th-1 immunity, although the
long-term effects of such a strategy are, at present, unknown
[85].
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